MINDING OUR RESOURCES

FMC is committed to responsible management of scarce resources – one of the major global challenges that we can influence.

As a specialty chemical solutions company, FMC’s environmental performance affects our own footprint as well as our customers’. We are working to reduce our own environmental impact and that of others in our supply chain.

Measurement and Transparency

FMC measures and monitors our environmental impacts to better assess opportunities for improvement. Our primary focus includes energy utilization, greenhouse gas emissions, water use and waste management. We have established key performance indicators (KPIs) for each of these areas and report quarterly to senior management on progress.

FMC is expanding the scope of the data provided for 2013 to encompass both our direct impacts and those that are material to our business and where we have influence. To this end, our selected 2013 and historical performance now includes contract manufacturers for Agricultural Solutions that make our active ingredients. These manufacturers are significant partners in our supply chain and they produce material amounts of waste. For increased transparency we have also added information on high volume/low toxicity materials resulting from FMC operations.

The Peroxogens business became a discontinued part of FMC operations in third quarter of 2013. As a result, we do not include that business in any 2013 results and have removed historical data so that year-to-year information is comparable.

Impact Reduction and Productivity Initiatives

We have implemented several initiatives to increase our operational efficiencies and manage our sustainability performance.

Energy Management

FMC has always focused on energy management and for years our facilities have implemented energy efficiency projects. Yet we are convinced there are additional energy savings opportunities still to be explored. To gain fresh perspectives on these possibilities we launched our Energy Management Center of Excellence (EMCOE) in 2012.

The mission of EMCOE is to drive continuous improvement in energy management and efficiency across all FMC facilities. This team is partnering with plant staff and consultants to systematically identify ways to reduce energy and carbon intensity at our manufacturing facilities. We conduct energy audits at select sites and use the findings to identify and implement new energy saving initiatives. We also share best practices that could be adopted at other FMC facilities.

As a principal source of sodium carbonate, trona ore is a raw material that is in high demand. FMC is committed to mining this resource safely and with increasing efficiency.

As a specialty chemical solutions company, FMC's environmental performance affects our own footprint as well as our customers'. We are working to reduce our own environmental impact and that of others in our supply chain.
FMC is committed to responsible management of scarce resources – one of the major global challenges that we can influence.

As a specialty chemical solutions company, FMC’s environmental performance affects our own footprint as well as our customers’. We are working to reduce our own environmental impact and that of others in our supply chain.

Measurement and Transparency

FMC measures and monitors our environmental impacts to better assess opportunities for improvement. Our primary focus includes energy utilization, greenhouse gas emissions, water use and waste management. We have established key performance indicators (KPIs) for each of these areas and report quarterly to senior management on progress.

FMC is expanding the scope of the data provided for 2013 to encompass both our direct impacts and those that are material to our business and where we have influence. To this end, our selected 2013 and historical performance now includes contract manufacturers for Agricultural Solutions that make our active ingredients. These manufacturers are significant partners in our supply chain and they produce material amounts of waste. For increased transparency we have also added information on high volume/low toxicity materials resulting from FMC operations.

The Peroxygens business became a discontinued part of FMC operations in third quarter of 2013. As a result, we do not include that business in any 2013 results and have removed historical data so that year-to-year information is comparable.

Impact Reduction and Productivity Initiatives

We have implemented several initiatives to increase our operational efficiencies and manage our sustainability performance.

Energy Management

FMC has always focused on energy management and for years our facilities have implemented energy efficiency projects. Yet we are convinced there are additional energy savings opportunities still to be explored. To gain fresh perspectives on these possibilities we launched our Energy Management Center of Excellence (EMCOE) in 2012.

The mission of EMCOE is to drive continuous improvement in energy management and efficiency across all FMC facilities. This team is partnering with plant staff and consultants to systematically identify ways to reduce energy and carbon intensity at our manufacturing facilities. We conduct energy audits at select sites and use the findings to identify and implement new energy saving initiatives. We also share best practices that could be adopted at other FMC facilities.
Greenhouse gas intensity decreased 3 percent primarily due to decreased process emissions at our Green River facility. FMC’s water intensity increased 5 percent. The increase was driven by drought conditions at our Green River site which necessitated increased water intake to maintain the proper water level in its containment lake.

In 2013, the cross-functional EMCOE team and third-party experts completed audits of two manufacturing sites: Rockland, Maine, and Milazzo, Italy. These sites were selected for pilot analyses because they are at different stages of energy monitoring and management, and as such, the results could provide information on the range of energy savings that might exist across FMC. Based on the audit results and cost/benefit assessments, we began implementation of several projects including repair of compressed air leaks and the installation of three heat recovery boilers, variable-frequency drives, piping and tank insulation, and programmable controls. The next audit will be conducted in 2014 at our largest operation and energy consuming facility in Green River, Wyoming.

Greenhouse Gas Emissions

Our natural soda ash mining and processing operation in Green River consumes the largest share of FMC’s energy usage and generates the most greenhouse gas emissions (GHG). Our GHG emissions include both those occurring from fuel use, as well as process emissions – naturally occurring emissions released during the mining and processing of natural soda ash. FMC’s 2013 GHG emission intensity decreased 3 percent due to lower process emissions at this facility.

We will conduct an EMCOE audit in 2014 to find new ways to decrease Green River’s energy and greenhouse gas emissions. However, it is important to note that production of natural soda ash from our Wyoming site already uses 40 percent less energy and produces about 40 percent less GHG than production of the alternative synthetic soda ash.

Water Management

In 2013, FMC’s water intensity increased 5 percent versus 2012. The increase was driven by lower demand for a large volume by-product produced by one of our sites in 2013, necessitating disposal of the material. 2013 water intensity is still 20 percent lower than 2011 levels.

FMC’s 2013 waste intensity increased by 11 percent vs. 2012. This was driven primarily by increased waste shipments from our Bessemer City, North Carolina, location in 2013 versus 2012. One of the site’s large volume by-products could not be distributed in a timely manner due to demand fluctuations necessitating disposal.

It is well recognized that major global shifts involving population growth and climate change are creating substantial concerns about water availability. To understand FMC’s exposure and to determine how to mitigate potential risks, we conducted a Water Risk Assessment (WRA) that cross-referenced water use details from our manufacturing sites with the World Resources Institute’s “Aqueduct” water mapping tool. Based on those results, we analyzed the potential water source risk for our manufacturing sites, our Agricultural Solutions contract manufacturers and key suppliers.

The WRA identified nine FMC facilities in water stressed areas with significant water dependency but only two – Green River, Wyoming, and Minera del Altiplano, Argentina – indicated future potential water instability. We are confident that we have adequate water availability in the near term. As a result of these findings we are working to better understand each situation and develop conservancy and contingency strategies to ensure long-term availability.

In addition, to ensure that potential water risks are considered in all future investment decisions, the WRA is being integrated into FMC’s long-term corporate planning. It will factor into decisions involving mergers and acquisitions and the Capital Deployment Process.

FMC 2013 SUSTAINABILITY REPORT
In 2013, the cross-functional EMCOE team and third-party experts completed audits of two manufacturing sites: Rockland, Maine, and Milazzo, Italy. These sites were selected for pilot analyses because they are at different stages of energy monitoring and management, and as such, the results could provide information on the range of energy savings that might exist across FMC. Based on the audit results and cost/benefit assessments, we began implementation of several projects including repair of compressed air leaks and the installation of three heat recovery boilers, variable-frequency drives, piping and tank insulation, and programmable controls. The next audit will be conducted in 2014 at our largest operation and energy consuming facility in Green River, Wyoming.

Greenhouse Gas Emissions

Our natural soda ash mining and processing operation in Green River consumes the largest share of FMC’s energy usage and generates the most greenhouse gas emissions (GHG). Our GHG emissions include both those occurring from fuel use, as well as process emissions – naturally occurring emissions released during the mining and processing of natural soda ash. FMC’s 2013 GHG emission intensity decreased 3 percent due to lower process emissions at this facility.

We will conduct an EMCOE audit in 2014 to find new ways to decrease Green River’s energy and greenhouse gas emissions. However, it is important to note that production of natural soda ash from our Wyoming site already uses 40 percent less energy and produces about 40 percent less GHG than production of the alternative synthetic soda ash.6

Water Management

In 2013, FMC’s water intensity increased 5 percent versus 2012. The increase was driven by drought conditions at our Green River site which necessitated increased water intake to maintain the proper water level in its containment lake.

FMC’s water intensity increased 5 percent. The increase was driven by drought conditions at our Green River site which necessitated increased water intake to maintain the proper water level in its containment lake.

FMC’s 2013 water intensity increased by 5 percent. The increase was driven by lower demand for a large volume by-product produced by one of our sites in 2013, necessitating disposal of the material.

In 2013, FMC’s water intensity increased 5 percent versus 2012. This was driven by drought conditions at our Green River site which necessitated increased water intake to maintain the proper water level in its containment lake.

FMC’s 2013 waste intensity increased by 11 percent vs. 2012. This was driven by lower demand for a large volume by-product produced by one of our sites in 2013, necessitating disposal of the material.

FMC’s 2013 waste intensity increased by 11 percent versus 2012. This was driven primarily by increased waste shipments from our Bessemer City, North Carolina, location in 2013 versus 2012. One of the site’s large volume by-products could not be distributed in a timely manner due to demand fluctuations necessitating disposal. Other significant factors included increased focus on elimination of out-of-service equipment and materials across all of our sites and, in some cases, tighter cross-contamination standards leading to increased rinsing of equipment and resulting wastewater.

Our decision to include Agricultural Solutions active ingredients contract manufacturers in our results also has a significant impact on waste. FMC employees work closely with these partners to continuously improve process yields and reduce waste intensity. In 2013, several significant reduction projects were implemented, including:

- Modification of process routes for several key active ingredients to improve overall yields and reduce waste loading.

Waste Reduction

FMC’s 2013 waste intensity increased by 11 percent versus 2012. This was driven primarily by increased waste shipments from our Bessemer City, North Carolina, location in 2013 versus 2012. One of the site’s large volume by-products could not be distributed in a timely manner due to demand fluctuations necessitating disposal. Other significant factors included increased focus on elimination of out-of-service equipment and materials across all of our sites and, in some cases, tighter cross-contamination standards leading to increased rinsing of equipment and resulting wastewater.

Our decision to include Agricultural Solutions active ingredients contract manufacturers in our results also has a significant impact on waste. FMC employees work closely with these partners to continuously improve process yields and reduce waste intensity. In 2013, several significant reduction projects were implemented, including:

- Modification of process routes for several key active ingredients to improve overall yields and reduce waste loading.
• Improvement in recovery of solvent streams and spent catalyst materials.
• Implementation of a system to recover a key raw material from a waste gas stream.
• Elimination of packaging material by converting material from a waste gas stream.

In addition to more standard waste types, processing of trona ore and seaweed results in high-volume/low-toxicity materials that must be disposed of or re-used. Volumes of these materials are associated with production as they are largely unused portions of a raw material being processed. We work to minimize the amount of material going to landfills and seek beneficial applications whenever possible.

• Processing of trona ore results in large amounts of excess inert shale (rock). FMC produced approximately 866,000 tons of this material in 2013. Additionally, production of steam and electricity required to process trona ore generated approximately 44,000 tons of boiler ash. We use the following hierarchy to determine how best to dispose of the materials:
 - Return shale to its place of origin – underground in formerly mined areas.
 - Manage on-site via a well-engineered storage area that is regularly inspected by regulators.
 - Repurpose the material in beneficial applications whenever possible.
 - Manage as waste when it is determined that beneficial applications are not possible.

FMC repurposes bio-solids at each of our Health and Nutrition manufacturing facilities in Newark, Delaware, United States. In 2011, FMC Brazil began offering its line of Green Jugs. The manufacturing of these products generates less greenhouse gas emissions than traditional plastic packaging. They represent the next generation in sugar-based bioplastic packaging solutions.

The chart below shows the total amounts of bio-solids produced and their final destination:

<table>
<thead>
<tr>
<th>Material Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Conditioning</td>
<td>91%</td>
</tr>
<tr>
<td>Other (compost, organic fertilizer, cattle feed)</td>
<td>6%</td>
</tr>
<tr>
<td>Landfill</td>
<td>3%</td>
</tr>
</tbody>
</table>

Manufacturing Improvements

FMC’s Manufacturing Excellence (ME) program, launched in 2012, drives sustainability and safety improvements in key performance metrics and encourages long-term changes in organizational culture. While each project may address different areas of manufacturing, they all build on an integrated three-phase process: pre-assessment, analysis and implementation. ME projects were completed at three sites in 2013:

- **Green River**: We developed and implemented safety and productivity systems and processes at pilot portions of the site that are expected to accelerate both safety and operational progress. Initial ME results included:
 - Continued use in the process (this allows us to recover any remaining alkaline value).
 - Return shale to its place of origin – underground in formerly mined areas.
 - Manage on-site via a well-engineered storage area that is regularly inspected by regulators.
 - Use in organic fertilizers
 - Soil conditioning or ‘landfarming’
 - Cattle feed supplements

Doug Wasson, an operator at FMC’s Green River bicarbonate plant, focuses on ensuring optimal production in a safe working environment.

A supply chain analysis to increase efficiency of our seaweed harvesting system.

Agricultural Solutions is planning to implement ME at two sites in 2014: Wyoming, Illinois, and Middleport, New York.

Effective Financial Decision-Making

We are transforming our Finance group into a globally integrated organization capable of supporting a growing and diverse enterprise. The initial design phase of the project began in 2013 and over the long term will address:

- Enhanced scalability with redesigned systems to help improve organizational efficiency.
- Increased value from partnerships between Finance and the businesses by enhancing areas such as financial planning and analysis.
- Fostering career opportunities and professional development to build organizational strength within the function.

The Capital Deployment Process (CDP), developed in 2013 establishes a methodical framework for evaluating capital investments including sustainability criteria. It raises specific questions about impacts.
• Improvement in recovery of solvent streams and spent catalyst materials.
• Implementation of a system to recover a key raw material from a waste gas stream.
• Elimination of packaging material by converting material supplied in drums to bulk supplied material.

In addition to more standard waste types, processing of trona ore and seaweed results in high-volume/low-toxicity materials that must be disposed of or re-used. Volumes of these materials are associated with production as they are largely unused portions of a raw material being processed. We work to minimize the amount of material going to landfills and seek beneficial applications whenever possible.

• Processing of trona ore results in large amounts of excess inert shale (rock). FMC produced approximately 866,000 tons of this material in 2013. Additionally, production of steam and electricity required to process trona ore generated approximately 44,000 tons of boiler ash. We use the following hierarchy to determine how best to dispose of the materials:
 ▶ Continued use in the process (this allows us to recover any remaining alkaline value).
 ▶ Return shale to its place of origin – underground in formerly mined areas.
 ▶ Manage on-site via a well-engineered storage area that is regularly inspected by regulators.
 ▶ FMC repurposes bio-solids at each of our Health and Nutrition production sites that generate them. Rather than going to a landfill, the materials are used for practical applications including:
 ▶ Composting the material
 ▶ Use in organic fertilizers
 ▶ Soil conditioning or ‘landfarming’
 ▶ Cattle feed supplements

The chart below shows the total amounts of bio-solids produced and their final destination:

Manufacturing Improvements
FMC’s Manufacturing Excellence (ME) program, launched in 2012, drives sustainability and safety improvements in key performance metrics and encourages long-term changes in organizational culture. While each project may address different areas of manufacturing, they all build on an integrated three-phase process: pre-assessment, analysis and implementation.
ME projects were completed at three sites in 2013:

 • Green River: We developed and implemented safety and productivity systems and processes at pilot portions of the site that are expected to accelerate both safety and operational progress. Initial ME results included:
 ▶ Improved knowledge had been lost due to retirements and production workstream proved the most challenging, as significant operational knowledge had been lost due to retirements and turnover in recent years and there were equipment failures throughout the project. The site is finally starting to see results as rates, quality and customer satisfaction have all improved considerably and process knowledge has deepened due to the changes.
 ▶ Development of a new organizational design to ensure effective operational oversight and cross-departmental alignment.
 ▶ An upgraded maintenance system that focuses on preventative rather than reactive maintenance.

 • Haugesund, Norway: The process at Haugesund focused on getting in place the right structure, processes and systems for safe, effective and efficient sourcing and production. Highlights include:
 ▶ Installation of a data focused culture to drive improved rates and yields. This production workstream proved the most challenging, as significant operational knowledge had been lost due to retirements and turnover in recent years and there were equipment failures throughout the project. The site is finally starting to see results as rates, quality and customer satisfaction have all improved considerably and process knowledge has deepened due to the changes.
 ▶ Development of a new organizational design to ensure effective operational oversight and cross-departmental alignment.
 ▶ An upgraded maintenance system that focuses on preventative rather than reactive maintenance.

 • Bessemer City, North Carolina: We restructured operations and reconfigured job functions, resulting in a number of new opportunities for employees. Unfortunately it also involved a reduction in staff as we needed to leverage long-term efficiencies and increase accountability throughout the workforce. In the reconfigured organization, all employees are gaining a better understanding of the processes in which they are involved and are leveraging technology more effectively while maintaining a high focus on safety in the work environment.

The Capital Deployment Process (CDP) developed within the function.

• Increased visibility into reporting systems enabling faster, more insightful process operations decision-making.
• Increased interaction and response time with less equipment downtime through new communications involving the maintenance, production and other departments at the shop floor level.

Agricultural Solutions is planning to implement ME at two sites in 2014: Wyoming, Illinois, and Middleport, New York.

Effective Financial Decision-Making
We are transforming our Finance group into a globally integrated organization capable of supporting a growing and diverse enterprise. The initial design phase of the project began in 2013 and over the long term will address:

 ▶ Enhanced scalability with redesigned systems to help improve organizational efficiency.
 ▶ Increased value from partnerships between Finance and the businesses by enhancing areas such as financial planning and analysis.
 ▶ Fostering career opportunities and professional development to build organizational strength within the function.

The Capital Deployment Process (CDP) developed in 2013 establishes a methodical framework for evaluating capital investments including sustainability criteria. It raises specific questions about impacts.
Before bicycle trails.

Albeit with access to walking and that existed hundreds of years ago, this area to much the same state.

Warm season grasses native to increasing biodiversity in the area. That provide a habitat for the ever are now open fields and ponds.

FMC contains areas which were water treatment plant to treat the conservation area is a brand new conservation park. Within the area provides land for a business approximately 170 acres and benefits.

The cleanup of the historical plant Site in Front Royal, Virginia, FMC is completing over 20 years of remedial construction activities. The cleanup of the historical plant area provides land for a business development area encompassing approximately 170 acres and the creation of open space in the remaining areas, including a conservation park. Within the conservation area is a brand new water treatment plant to treat the contaminated groundwater.

The conservation park created by FMC contains areas which were once waste disposal basins and are now open fields and ponds that provide a habitat for the ever increasing biodiversity in the area. Warm season grasses native to Virginia were planted to help return this area to much the same state that existed hundreds of years ago, albeit with access to walking and bicycle trails.

FMC 2013 SUSTAINABILITY REPORT
Before

After

TOTAL

SHAPING SOLUTIONS FOR THE FUTURE

Since launch in 2012, all new suppliers are subject to the screening process and must adhere to the Code.

Front Royal Forges Forward

At the Avtex Fibers Superfund Site in Front Royal, Virginia, FMC is completing over 20 years of remedial construction activities. The cleanup of the historical plant area provides land for a business development area encompassing approximately 170 acres and the creation of open space in the remaining areas, including a conservation park. Within the conservation area is a brand new water treatment plant to treat the contaminated groundwater.

The conservation park created by FMC contains areas which were once waste disposal basins and are now open fields and ponds that provide a habitat for the ever increasing biodiversity in the area. Warm season grasses native to Virginia were planted to help return this area to much the same state that existed hundreds of years ago, albeit with access to walking and bicycle trails.

Front Royal Forges Forward

Supplier Relationships

FMC believes that responsible corporate citizenship extends to our suppliers’ business practices. In 2012 FMC published its first Supplier Code of Conduct and updated our vendor management process to ensure that our raw material suppliers and contractors sourced responsibly and provided the best value and support to our businesses and communities.

- Since publication in 2012, new suppliers are required to adhere to the Code and have gone through our screening and verification process prior to joining our network.
- By the end of 2013 all of our most significant, existing raw material suppliers were also screened against our criteria. We identified these initial suppliers based on the types of material they supply, if they were the sole source of a material, or if there were other areas of concern such as geographic sensitivity.
- In addition to continuing to use the criteria for new suppliers, in 2014 our goal is to requalify all of FMC’s existing raw material suppliers and significant construction contractors who were working with us before the process was enacted. Given the large number of suppliers, a third-party auditor will undertake this screening process.

Looking ahead, we will leverage our management practices around responsible sourcing to manage supply risk and opportunities, continue to work with our supply chain partners to integrate our processes into site policies and work closely with suppliers to improve practices and drive innovation.

Regulatory Compliance

To ensure FMC’s compliance with the reporting requirements of the U.S. Dodd-Frank Wall Street Reform and Consumer Protection Act and to improve management of potential supplier risk, we established processes to trace materials through our supply chain. Our efforts included the development of a Conflict Mineral Policy, obtaining technical data on the composition of our materials to understand if they contain conflict minerals, and conducting further due diligence with our suppliers to understand country of origin for materials containing tin, tungsten, tantalum and gold.

In May 2014, FMC filed its report on capital Form SD with the U.S. Securities and Exchange commission, as required under the Dodd-Frank Act.

Sharing Responsibility for Resource Management

FMC’s resource management projects are elements of a systematic effort to enhance visibility into and influence the impact we have on the environment and our stakeholders. We are taking steps to identify, analyze and act on opportunities to use natural resources more efficiently and to reduce our environmental footprint. We are strengthening collaboration with members of our value chain to deal effectively with some of the world’s most challenging issues.

FMC’s Lithium’s Lectro® Max line of customized lithium foils is used as the anode in lithium batteries. Lithium, being both the lightest and the most electronegative, provides the highest electrochemical equivalence of all metals.

SHAPING SOLUTIONS FOR THE FUTURE

FMC 2013 SUSTAINABILITY REPORT 37