GLOBAL GHG EMISSIONS
includes both direct and indirect emissions

GLOBAL WATER USAGE
(excludes once-thru existing water)

GLOBAL WASTE BY TYPE

GLOBAL WASTE BY DESTINATION

In 2013, the cross-functional EMCOE team and third-party experts completed audits of two manufacturing sites: Rockland, Maine, and Milazzo, Italy. These sites were selected for pilot analyses because they are at different stages of energy monitoring and management, and as such, the results could provide information on the range of energy savings that might exist across FMC. Based on the audit results and cost/benefit assessments, we began implementation of several projects including repair of compressed air leaks and the installation of three heat recovery boilers, variable-frequency drives, piping and tank insulation, and programmable controls. The next audit will be conducted in 2014 at our largest operation and energy consuming facility in Green River, Wyoming.

Greenhouse Gas Emissions

Our natural soda ash mining and processing operation in Green River consumes the largest share of FMC’s energy usage and generates the most greenhouse gas emissions (GHG). Our GHG emissions include both those occurring from fuel use, as well as process emissions – naturally occurring emissions released during the mining and processing of natural soda ash. FMC’s 2013 GHG emission intensity decreased 3 percent due to lower process emissions at this facility.

We will conduct an EMCOE audit in 2014 to find new ways to decrease Green River’s energy and greenhouse gas emissions. However, it is important to note that production of natural soda ash from our Wyoming site already uses 40 percent less energy and produces about 40 percent less GHG than production of the alternative synthetic soda ash.

Water Management

In 2013, FMC’s water intensity increased 5 percent versus 2012. The Green River site is our largest consumer of water, where in addition to use in solution mining, water sources are used to remove naturally occurring impurities that enter our process with the trona ore. We collect this process water in a containment lake, allowing us to recover any remaining soda ash value. Process water from the containment lake is also used as an extremely energy-efficient source of cooling capacity versus energy-intensive mechanical chillers. However, the lake depends on natural precipitation for level maintenance. With continued drought conditions in the Western United States, the containment lake reached critically low levels in 2013 and additional water intake was necessary to maintain the appropriate lake level. This maintenance was the primary driver for FMC’s increased water intensity in 2013.

It is well recognized that major global shifts involving population growth and climate change are creating substantial concerns about water availability. To understand FMC’s exposure and to determine how to mitigate potential risks, we conducted a Water Risk Assessment (WRA) that cross-referenced water use details from our manufacturing sites with the World Resources Institute’s “Aqueduct” water mapping tool. Based on those results, we analyzed the potential water source risk for our manufacturing sites, our Agricultural Solutions contract manufacturers and key suppliers.

The WRA identified nine FMC facilities in water stressed areas with significant water dependency but only two – Green River, Wyoming, and Minera del Altiplano, Argentina – indicated future potential water instability. We are confident that we have adequate water availability in the near term. As a result of these findings we are working to better understand each situation and develop conservancy and contingency strategies to ensure long-term availability.

In addition, to ensure that potential water risks are considered in all future investment decisions, the WRA is being integrated into FMC’s long-term corporate planning. It will factor into decisions involving mergers and acquisitions and the Capital Deployment Process.

Waste Reduction

FMC’s 2013 waste intensity increased by 11 percent versus 2012. This was driven primarily by increased waste shipments from our Bessemer City, North Carolina, location in 2013 versus 2012. One of the site’s large volume by-products could not be distributed in a timely manner due to demand fluctuations necessitating disposal. Other significant factors included increased focus on elimination of out-of-service equipment and materials across all of our sites and, in some cases, tighter cross-contamination standards leading to increased rinsing of equipment and resulting wastewater.

Our decision to include Agricultural Solutions active ingredients contract manufacturers in our results also has a significant impact on waste. FMC employees work closely with these partners to continuously improve process yields and reduce waste intensity. In 2013, several significant reduction projects were implemented, including:

- Modification of process routes for several key active ingredients to improve overall yields and reduce waste loading.