MINDING OUR RESOURCES

As a specialty chemical solutions company, FMC’s environmental performance affects our own footprint as well as our customers’. We are working to reduce our own environmental impact and that of others in our supply chain.

Measurement and Transparency

FMC measures and monitors our environmental impacts to better assess opportunities for improvement. Our primary focus includes energy utilization, greenhouse gas emissions, water use and waste management. We have established key performance indicators (KPIs) for each of these areas and report quarterly to senior management on progress.

FMC is expanding the scope of the data provided for 2013 to encompass both our direct impacts and those that are material to our business and where we have influence. To this end, our selected 2013 and historical performance now includes contract manufacturers for Agricultural Solutions that make our active ingredients. These manufacturers are significant partners in our supply chain and they produce material amounts of waste. For increased transparency we have also added information on high volume/low toxicity materials resulting from FMC operations.

The Peroxogens business became a discontinued part of FMC operations in third quarter of 2013. As a result, we do not include that business in any 2013 results and have removed historical data so that year-to-year information is comparable.

Impact Reduction and Productivity Initiatives

We have implemented several initiatives to increase our operational efficiencies and manage our sustainability performance.

Energy Management

FMC has always focused on energy management and for years our facilities have implemented energy efficiency projects. Yet we are convinced there are additional energy savings opportunities still to be explored. To gain fresh perspectives on these possibilities we launched our Energy Management Center of Excellence (EMCOE) in 2012.

The mission of EMCOE is to drive continuous improvement in energy management and efficiency across all FMC facilities. This team is partnering with plant staff and consultants to systematically identify ways to reduce energy and carbon intensity at our manufacturing facilities. We conduct energy audits at select sites and use the findings to identify and implement new energy saving initiatives. We also share best practices that could be adopted at other FMC facilities.

LEGEND FOR ENVIRONMENTAL GRAPHS

Legend

AI = Agricultural Solutions active ingredient contract manufacturers

Intensity = Total amount of specific operational measure/total tons of production

GLOBAL ENERGY USAGE

FMC energy intensity remained essentially constant versus 2012.

ROCKLAND SITE TO SWITCH FROM FUEL OIL TO COMPRESSED NATURAL GAS

In 2012 we began a project to convert the Rockland, Maine, facility from No. 6 fuel oil to compressed natural gas. Throughout the 2013 planning process we conducted extensive reviews with community representatives to obtain their input and views. We anticipate that the changeover – which will be completed in 2014 – will reduce greenhouse gases by 33 percent, particulate emissions by 90 percent and other emissions by even more.

FMC is committed to responsible management of scarce resources – one of the major global challenges that we can influence.

As a principal source of sodium carbonate, trona ore is a raw material that is in high demand. FMC is committed to mining this resource safely and with increasing efficiency.
MINDING OUR RESOURCES

As a specialty chemical solutions company, FMC’s environmental performance affects our own footprint as well as our customers’. We are working to reduce our own environmental impact and that of others in our supply chain.

Measurement and Transparency

FMC measures and monitors our environmental impacts to better assess opportunities for improvement. Our primary focus includes energy utilization, greenhouse gas emissions, water use and waste management. We have established key performance indicators (KPIs) for each of these areas and report quarterly to senior management on progress.

FMC is expanding the scope of the data provided for 2013 to encompass both our direct impacts and those that are material to our business and where we have influence. To this end, our selected 2013 and historical performance now includes contract manufacturers for Agricultural Solutions that make our active ingredients. These manufacturers are significant partners in our supply chain and they produce material amounts of waste. For increased transparency we have also added information on high volume/low toxicity materials resulting from FMC operations.

Impact Reduction and Productivity Initiatives

We have implemented several initiatives to increase our operational efficiencies and manage our sustainability performance.

Energy Management

FMC has always focused on energy management and for years our facilities have implemented energy efficiency projects. Yet we are convinced there are additional energy savings opportunities still to be explored. To gain fresh perspectives on these possibilities we launched our Energy Management Center of Excellence (EMCOE) in 2012.

The mission of EMCOE is to drive continuous improvement in energy management and efficiency across all FMC facilities. This team is partnering with plant staff and consultants to systematically identify ways to reduce energy and carbon intensity at our manufacturing facilities. We conduct energy audits at select sites and use the findings to identify and implement new energy saving initiatives. We also share best practices that could be adopted at other FMC facilities.

As a principal source of sodium carbonate, trona ore is a raw material that is in high demand. FMC is committed to mining this resource safely and with increasing efficiency.

FMC is committed to responsible management of scarce resources – one of the major global challenges that we can influence.
GLOBAL GHG EMISSIONS
Includes both direct and indirect emissions.

<table>
<thead>
<tr>
<th>Year</th>
<th>Total GHG Emissions (Mtons CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
</tr>
</tbody>
</table>

FMC’s water intensity increased 5 percent. The increase was driven by drought conditions at our Green River site which necessitated increased water intake to maintain the proper water level in its containment lake.

GREENHOUSE GAS EMISSIONS
Our natural soda ash mining and processing operation in Green River consumes the largest share of FMC’s energy usage and generates the most greenhouse gas emissions (GHG). Dur GHG emissions include both those occurring from fuel use, as well as process emissions – naturally occurring emissions released during the mining and processing of natural soda ash. FMC’s 2013 GHG emission intensity decreased 3 percent due to lower process emissions at this facility.

We will conduct an EMCOE audit in 2014 to find new ways to decrease Green River’s energy and greenhouse gas emissions. However, it is important to note that the production of natural soda ash from our Wyoming site already uses 40 percent less energy and produces about 40 percent less GHG than production of the alternative synthetic soda ash.

Water Management
In 2013, FMC’s water intensity increased 5 percent versus 2012. The Green River site is our largest consumer of water, where in addition to using in solution mining, water sources are used to remove naturally occurring impurities that enter our process with the trona ore. We collect this process water in a containment lake, allowing us to recover any remaining soda ash value. Process water from the containment lake is also used as an extremely energy-efficient source of cooling capacity versus energy-intensive mechanical chillers. However, the lake depends on natural precipitation for level maintenance. With continued drought conditions in the Western United States, the containment lake reached critically low levels in 2013 and additional water intake was necessary to maintain the appropriate lake level. This maintenance was the primary driver for FMC’s increased water intensity in 2013.

It is well recognized that major global shifts in population growth and climate change are creating substantial concerns about water availability. To understand FMC’s exposure and to determine how to mitigate potential risks, we conducted a Water Risk Assessment (WRA) that cross-referenced water use data from our manufacturing sites with the World Resources Institute’s “Aqueduct” water mapping tool. Based on those results, we analyzed the potential water source risk for our manufacturing sites, our Agricultural Solutions contract manufacturers and key suppliers.

The WRA identified nine FMC facilities in water stressed areas with significant water dependency but only two – Green River, Wyoming, and Miner del Altiplano, Argentina – indicated future potential water instability. We are confident that we have adequate water availability in the near term. As a result of these findings we are working to better understand each situation and develop conservancy and contingency strategies to ensure long-term availability.

In addition, to ensure that potential water risks are considered in all future investment decisions, the WRA is being integrated into FMC’s long-term corporate planning. It will factor into decisions involving mergers and acquisitions and the Capital Deployment Process.

Renewable energy is a key source of power at our Argentina and Iceland facilities. The Miner del Altiplano site high in the Andes Mountains uses solar evaporation ponds as a primary part of its lithium production process. The Iceland seaweed processing facility below capitalizes on the heat generated from geothermal underground pools for 100 percent of its energy.

RENEWABLE ENERGY POWERS FMC SITES
Renewable energy is a key source of power at our Argentina and Iceland facilities. The Miner del Altiplano site high in the Andes Mountains uses solar evaporation ponds as a primary part of its lithium production process. The Iceland seaweed processing facility below capitalizes on the heat generated from geothermal underground pools for 100 percent of its energy.

In 2013, the cross-functional EMCOE team and third-party experts completed audits of two manufacturing sites: Rockland, Maine, and Milazzo, Italy. These sites were selected for pilot analyses because they are at different stages of energy monitoring and management, and as such, the results could provide information on the range of energy savings that might exist across FMC. Based on the audit results and cost/benefit assessments, we began implementation of several projects including repair of compressed air leaks and the installation of three heat recovery boilers, variable-frequency drives, piping and tank insulation, and programmable controls. The next audit will be conducted in 2014 at our largest operation and energy consuming facility in Green River, Wyoming.

GREENHOUSE GAS EMISSIONS
Our natural soda ash mining and processing operation in Green River consumes the largest share of FMC’s energy usage and generates the most greenhouse gas emissions (GHG). Dur GHG emissions include both those occurring from fuel use, as well as process emissions – naturally occurring emissions released during the mining and processing of natural soda ash. FMC’s 2013 GHG emission intensity decreased 3 percent due to lower process emissions at this facility.

We will conduct an EMCOE audit in 2014 to find new ways to decrease Green River’s energy and greenhouse gas emissions. However, it is important to note that the production of natural soda ash from our Wyoming site already uses 40 percent less energy and produces about 40 percent less GHG than production of the alternative synthetic soda ash.

Water Management
In 2013, FMC’s water intensity increased 5 percent versus 2012. The Green River site is our largest consumer of water, where in addition to using in solution mining, water sources are used to remove naturally occurring impurities that enter our process with the trona ore. We collect this process water in a containment lake, allowing us to recover any remaining soda ash value. Process water from the containment lake is also used as an extremely energy-efficient source of cooling capacity versus energy-intensive mechanical chillers. However, the lake depends on natural precipitation for level maintenance. With continued drought conditions in the Western United States, the containment lake reached critically low levels in 2013 and additional water intake was necessary to maintain the appropriate lake level. This maintenance was the primary driver for FMC’s increased water intensity in 2013.

It is well recognized that major global shifts in population growth and climate change are creating substantial concerns about water availability. To understand FMC’s exposure and to determine how to mitigate potential risks, we conducted a Water Risk Assessment (WRA) that cross-referenced water use data from our manufacturing sites with the World Resources Institute’s “Aqueduct” water mapping tool. Based on those results, we analyzed the potential water source risk for our manufacturing sites, our Agricultural Solutions contract manufacturers and key suppliers.

The WRA identified nine FMC facilities in water stressed areas with significant water dependency but only two – Green River, Wyoming, and Miner del Altiplano, Argentina – indicated future potential water instability. We are confident that we have adequate water availability in the near term. As a result of these findings we are working to better understand each situation and develop conservancy and contingency strategies to ensure long-term availability.

In addition, to ensure that potential water risks are considered in all future investment decisions, the WRA is being integrated into FMC’s long-term corporate planning. It will factor into decisions involving mergers and acquisitions and the Capital Deployment Process.

Waste Reduction
FMC’s 2013 waste intensity increased by 11 percent versus 2012. This was driven primarily by increased waste shipments from our Bessemer City, North Carolina, location in 2013 versus 2012. One of the site’s large volume by-products could not be distributed in a timely manner due to demand fluctuations necessitating disposal. Other significant factors included increased focus on elimination of out-of-service equipment and materials across all of our sites and, in some cases, tighter cross- contamination standards leading to increased rinsing of equipment and resulting wastewater.

Our decision to include Agricultural Solutions active ingredients contract manufacturers in our results also has a significant impact on waste. FMC employees work closely with these partners to continuously improve process yields and reduce waste intensity. In 2013, several significant reduction projects were implemented, including:

- Modification of process routes for several key active ingredients to improve overall yields and reduce waste loading.

FMC will perform a detailed waste assessment project in 2014. We expect this project to inform our strategy for waste reduction and decreasing waste-to-landfill.

GLOBAL WASTE BY TYPE
Includes FMC hazardous, non-hazardous and industrial waste only. [All data not included]
Greenhouse gas intensity decreased 3 percent primarily due to decreased process emissions at our Green River facility.

FMC’s water intensity increased 5 percent. The increase was driven by drought conditions at our Green River site which necessitated increased water intake to maintain the proper water level in its containment lake.

In 2013, the cross-functional EMCOE team and third-party experts completed audits of two manufacturing sites: Rockland, Maine, and Milazzo, Italy. These sites were selected for pilot analyses because they are at different stages of energy monitoring and management, and as such, the results could provide information on the range of energy savings that might exist across FMC. Based on the audit results and cost/benefit assessments, we began implementation of several projects including repair of compressed air leaks and the installation of three heat recovery boilers, variable-frequency drives, piping and tank insulation, and programmable controls. The next audit will be conducted in 2014 at our largest operation and energy consuming facility in Green River, Wyoming.

Greenhouse Gas Emissions

Our natural soda ash mining and processing operation in Green River consumes the largest share of FMC’s energy usage and generates the most greenhouse gas emissions (GHG). Dur GHG emissions include both those occurring from fuel use, as well as process emissions – naturally occurring emissions released during the mining and processing of natural soda ash. FMC’s 2013 GHG emission intensity decreased 3 percent due to lower process emissions at this facility.

We will conduct an EMCOE audit in 2014 to find new ways to decrease Green River’s energy and greenhouse gas emissions. However, it is important to note that production of natural soda ash from our Wyoming site already uses 40 percent less energy and produces about 40 percent less GHG than production of the alternative synthetic soda ash.

Water Management

In 2013, FMC’s water intensity increased 5 percent versus 2012. The Green River site is our largest consumer of water, where in addition to use in solution mining, water sources are used to remove naturally occurring impurities that enter our process with the trona ore. We collect this process water in a containment lake, allowing us to recover any remaining soda ash value. Process water from the containment lake is also used as an extremely energy-efficient source of cooling capacity versus energy-intensive mechanical chillers. However, the lake depends on natural precipitation for level maintenance. With continued drought conditions in the Western United States, the containment lake reached critically low levels in 2013 and additional water intake was necessary to maintain the appropriate lake level. This maintenance was the primary driver for FMC’s increased water intensity in 2013.

It is well recognized that major global shifts involving population growth and climate change are creating substantial concerns about water availability. To understand FMC’s exposure and to determine how to mitigate potential risks, we conducted a Water Risk Assessment (WRA) that cross-referenced water use details from our manufacturing sites with the World Resources Institute’s “Aqueduct” water mapping tool. Based on those results, we analyzed the potential water source risk for our manufacturing sites, our Agricultural Solutions contract manufacturers and key suppliers.

The WRA identified nine FMC facilities in water stressed areas with significant water dependency but only two – Green River, Wyoming, and Minera del Altiplano, Argentina – indicated future potential water instability. We are confident that we have adequate water availability in the near term. As a result of these findings we are working to better understand each situation and develop conservancy and contingency strategies to ensure long-term availability.

In addition, to ensure that potential water risks are considered in all future investment decisions, the WRA is being integrated into FMC’s long-term corporate planning. It will factor into decisions involving mergers and acquisitions and the Capital Deployment Process.

Waste Reduction

FMC’s 2013 waste intensity increased by 11 percent versus 2012. This was driven primarily by increased waste shipments from our Bessemer City, North Carolina, location in 2013 versus 2012. One of the site’s large volume by-products could not be distributed in a timely manner due to demand fluctuations necessitating disposal. Other significant factors included increased focus on elimination of out-of-service equipment and materials across all of our sites and, in some cases, tighter cross-contamination standards leading to increased rinsing of equipment and resulting wastewater.

Our decision to include Agricultural Solutions active ingredients contract manufacturers in our results also has a significant impact on waste. FMC employees work closely with these partners to continuously improve process yields and reduce waste intensity. In 2013, several significant reduction projects were implemented, including:

- Modification of process routes for several key active ingredients to improve overall yields and reduce waste loading.

Global Waste by Type

FMC’s 2013 waste intensity increased by 11 percent versus 2012. This was driven primarily by increased waste shipments from our Bessemer City, North Carolina, location in 2013 versus 2012. One of the site’s large volume by-products could not be distributed in a timely manner due to demand fluctuations necessitating disposal. Other significant factors included increased focus on elimination of out-of-service equipment and materials across all of our sites and, in some cases, tighter cross-contamination standards leading to increased rinsing of equipment and resulting wastewater.

Our decision to include Agricultural Solutions active ingredients contract manufacturers in our results also has a significant impact on waste. FMC employees work closely with these partners to continuously improve process yields and reduce waste intensity. In 2013, several significant reduction projects were implemented, including:

- Modification of process routes for several key active ingredients to improve overall yields and reduce waste loading.

Waste Reduction

FMC’s 2013 waste intensity increased by 11 percent versus 2012. This was driven primarily by increased waste shipments from our Bessemer City, North Carolina, location in 2013 versus 2012. One of the site’s large volume by-products could not be distributed in a timely manner due to demand fluctuations necessitating disposal. Other significant factors included increased focus on elimination of out-of-service equipment and materials across all of our sites and, in some cases, tighter cross-contamination standards leading to increased rinsing of equipment and resulting wastewater.

Our decision to include Agricultural Solutions active ingredients contract manufacturers in our results also has a significant impact on waste. FMC employees work closely with these partners to continuously improve process yields and reduce waste intensity. In 2013, several significant reduction projects were implemented, including:

- Modification of process routes for several key active ingredients to improve overall yields and reduce waste loading.

Global Waste by Destination

Includes FMC hazardous, non-hazardous and industrial waste only. (Al data not included)

FMC will perform a detailed waste assessment project in 2014. We expect this project to inform our strategy for waste reduction and decreasing waste-to-landfill.

In 2013, the cross-functional EMCOE team and third-party experts completed audits of two manufacturing sites: Rockland, Maine, and Milazzo, Italy. These sites were selected for pilot analyses because they are at different stages of energy monitoring and management, and as such, the results could provide information on the range of energy savings that might exist across FMC. Based on the audit results and cost/benefit assessments, we began implementation of several projects including repair of compressed air leaks and the installation of three heat recovery boilers, variable-frequency drives, piping and tank insulation, and programmable controls. The next audit will be conducted in 2014 at our largest operation and energy consuming facility in Green River, Wyoming.

Greenhouse Gas Emissions

Our natural soda ash mining and processing operation in Green River consumes the largest share of FMC’s energy usage and generates the most greenhouse gas emissions (GHG). Dur GHG emissions include both those occurring from fuel use, as well as process emissions – naturally occurring emissions released during the mining and processing of natural soda ash. FMC’s 2013 GHG emission intensity decreased 3 percent due to lower process emissions at this facility.

We will conduct an EMCOE audit in 2014 to find new ways to decrease Green River’s energy and greenhouse gas emissions. However, it is important to note that production of natural soda ash from our Wyoming site already uses 40 percent less energy and produces about 40 percent less GHG than production of the alternative synthetic soda ash.

Water Management

In 2013, FMC’s water intensity increased 5 percent versus 2012. The Green River site is our largest consumer of water, where in addition to use in solution mining, water sources are used to remove naturally occurring impurities that enter our process with the trona ore. We collect this process water in a containment lake, allowing us to recover any remaining soda ash value. Process water from the containment lake is also used as an extremely energy-efficient source of cooling capacity versus energy-intensive mechanical chillers. However, the lake depends on natural precipitation for level maintenance. With continued drought conditions in the Western United States, the containment lake reached critically low levels in 2013 and additional water intake was necessary to maintain the appropriate lake level. This maintenance was the primary driver for FMC’s increased water intensity in 2013.

It is well recognized that major global shifts involving population growth and climate change are creating substantial concerns about water availability. To understand FMC’s exposure and to determine how to mitigate potential risks, we conducted a Water Risk Assessment (WRA) that cross-referenced water use details from our manufacturing sites with the World Resources Institute’s “Aqueduct” water mapping tool. Based on those results, we analyzed the potential water source risk for our manufacturing sites, our Agricultural Solutions contract manufacturers and key suppliers.

The WRA identified nine FMC facilities in water stressed areas with significant water dependency but only two – Green River, Wyoming, and Minera del Altiplano, Argentina – indicated future potential water instability. We are confident that we have adequate water availability in the near term. As a result of these findings we are working to better understand each situation and develop conservancy and contingency strategies to ensure long-term availability.

In addition, to ensure that potential water risks are considered in all future investment decisions, the WRA is being integrated into FMC’s long-term corporate planning. It will factor into decisions involving mergers and acquisitions and the Capital Deployment Process.

Waste Reduction

FMC’s 2013 waste intensity increased by 11 percent versus 2012. This was driven primarily by increased waste shipments from our Bessemer City, North Carolina, location in 2013 versus 2012. One of the site’s large volume by-products could not be distributed in a timely manner due to demand fluctuations necessitating disposal. Other significant factors included increased focus on elimination of out-of-service equipment and materials across all of our sites and, in some cases, tighter cross-contamination standards leading to increased rinsing of equipment and resulting wastewater.

Our decision to include Agricultural Solutions active ingredients contract manufacturers in our results also has a significant impact on waste. FMC employees work closely with these partners to continuously improve process yields and reduce waste intensity. In 2013, several significant reduction projects were implemented, including:

- Modification of process routes for several key active ingredients to improve overall yields and reduce waste loading.
In 2011, FMC Brazil began offering its line of Green Jugs. The manufacturing of these products generates less greenhouse gas emissions than traditional plastic packaging. They represent the next generation in sugar-based bioplastic packaging solutions.

In addition to more standard waste types, processing of trona ore and seaweed results in high-volume/low-toxicity materials that must be disposed of or re-used. Volumes of these materials are associated with production as they are largely unused portions of a raw material being processed. We work to minimize the amount of material going to landfills and seek beneficial applications whenever possible.

- Improvement in recovery of solvent streams and spent catalyst materials.
- Implementation of a system to recover a key raw material from a waste gas stream.
- Elimination of packaging material by converting material supplied in drums to bulk supplied material.

In 2013, FMC launched its Manufacturing Excellence program, which focuses on getting in place the right structure, processes and systems for safe, effective and efficient sourcing and production. Highlights include:

- Installation of a data focused culture to drive improved rates and yields. This production workstream proved the most challenging, as significant operational knowledge had been lost due to retirements and turnover in recent years and there were equipment failures throughout the project. The site is finally starting to see results as rates, quality and customer satisfaction have all improved considerably and process knowledge has deepened due to the changes.
- Development of a new organizational design to ensure effective operational oversight and cross-departmental alignment.
- An upgraded maintenance system that focuses on preventive rather than reactive maintenance.

FMC’s Manufacturing Excellence program, launched in 2012, drives sustainability and safety improvements in key performance metrics and encourages long-term changes in organizational culture. While each project may address different areas of manufacturing, they all build on an integrated three-phase process: pre-assessment, analysis and implementation.

ME projects were completed at three sites in 2013:

- **Green River**: We developed and implemented safety and productivity systems and processes at pilot portions of the site that are expected to accelerate both safety and operational progress. Initial ME results included:
  - Continued use in the process (this allows us to recover any remaining alkaline value).
  - Return shale to its place of origin – underground in formerly mined areas.
  - Manage on-site via a well-engineered storage area that is regularly inspected by regulators.
  - FMC repurposes bio-solids at each of our Health and Nutrition production sites that generate them. Rather than going to a landfill, the materials are used for practical applications including:
    - Composting the material
    - Use in organic fertilizers
    - Soil conditioning or ‘landfarming’
    - Cattle feed supplements

  The chart below shows the total amounts of bio-solids produced and their final destination:

  - Soil Conditioning: 91%
  - Other (compost, organic fertilizer, cattle feed): 6%
  - Landfill: 3%

To answer customers’ needs, in 2013 FMC introduced the Double Green jug. This solution features an inner layer of nylon for use with solvent-based products and its stackable design eliminates 172 kilotons of cardboard packaging.
In 2011, FMC Brazil began offering its line of Green Jugs. The manufacturing of these products generates less greenhouse gas emissions than traditional plastic packaging. They represent the next generation in sugar-based bioplastic packaging solutions.

In addition to more standard waste types, processing of trona ore and seaweed results in high-volume/low-toxicity materials that must be disposed of or re-used. Volumes of these materials are associated with production as they are largely unused portions of a raw material being processed. We work to minimize the amount of material going to landfills and seek beneficial applications whenever possible.

- Improvement in recovery of solvent streams and spent catalyst materials.
- Implementation of a system to recover a key raw material from a waste gas stream.
- Elimination of packaging material by converting material supplied in drums to bulk supplied material.

The chart below shows the total amounts of bio-solids produced and their final destination:

**Manufacturing Improvements**

FMC’s Manufacturing Excellence (ME) program, launched in 2012, drives sustainability and safety improvements in key performance metrics and encourages long-term changes in organizational culture. While each project may address different areas of manufacturing, they all build on an integrated three-phase process: pre-assessment, analysis and implementation.

ME projects were completed at three sites in 2013:

- **Green River: We developed and implemented safety and productivity systems and processes at pilot portions of the site that are expected to accelerate both safety and operational progress. Initial ME results included:**
  - Continued use in the process (this allows us to recover any remaining alkaline value).
  - Return shale to its place of origin – underground in formerly mined areas.
  - Manage on-site via a well-engineered storage area that is regularly inspected by regulators.
  - FMC repurposes bio-solids at each of our Health and Nutrition production sites that generate them. Rather than going to a landfill, the materials are used for practical applications including:
    - Composting the material
    - Use in organic fertilizers
    - Soil conditioning or ‘landfarming’
    - Cattle feed supplements
  - Increased visibility into reporting systems enabling faster, more insightful process operations decision-making.
  - Increased interaction and response time with less equipment downtime through new communications involving the maintenance, production and other departments at the shop floor level.

- **Haugesund, Norway: The process at Haugesund focused on getting in place the right structure, processes and systems for safe, effective and efficient sourcing and production. Highlights include:**
  - Installation of a data focused culture to drive improved rates and yields. This production workstream proved the most challenging, as significant operational knowledge had been lost due to retirements and turnover in recent years and there were equipment failures throughout the project. The site is finally starting to see results as rates, quality and customer satisfaction have all improved considerably and process knowledge has deepened due to the changes.
  - Development of a new organizational design to ensure effective operational oversight and cross-departmental alignment.
  - An upgraded maintenance system that focuses on preventative rather than reactive maintenance.

- **Bessemer City, North Carolina: We restructured operations and reconfigured job functions, resulting in a number of new opportunities for employees. Unfortunately it also involved a reduction in staff as we needed to leverage long-term efficiencies and increase accountability throughout the workforce. In the reconfigured organization, all employees are gaining a better understanding of the processes in which they are involved and are leveraging technology more effectively while maintaining a high focus on safety in the work environment.**

The Capital Deployment Process (CDP) developed within the function.

- **Fostering career opportunities and professional development to build organizational strength**
- **Increased value from partnerships enhancing areas such as financial planning and analysis.**
- **Enhanced scalability with redesigned systems to help improve organizational efficiency.**

Agricultural Solutions is planning to implement ME at two sites in 2014: Wyoming, Illinois, and Middleport, New York.

**Effective Financial Decision-Making**

We are transforming our Finance group into a globally integrated organization capable of supporting a growing and diverse enterprise. The initial design phase of the project began in 2013 and over the long term will address:

- Enhanced scalability with redesigned systems to help improve organizational efficiency.
- Increased value from partnerships between Finance and the businesses by enhancing areas such as financial planning and analysis.
- Fostering career opportunities and professional development to build organizational strength within the function.

The Capital Deployment Process (CDP) developed in 2013 establishes a methodical framework for evaluating capital investments including sustainability criteria. It raises specific questions about impacts.
Since launch in 2012, all new suppliers are subject to the screening process and must adhere to the Code.

Suppliers

FMC believes that responsible corporate citizenship extends to our suppliers’ business practices.

In 2012 FMC published its first Supplier Code of Conduct and updated our vendor management process to ensure that our raw material suppliers and contractors sourced responsibly and provided the best value and support to our businesses and communities.  
- Since publication in 2012, new suppliers are required to adhere to the Code and have gone through our screening and verification process prior to joining our network.
- By the end of 2013 all of our most significant, existing raw material suppliers were also screened against our criteria. We identified these initial suppliers based on the types of material they supply, if they were the sole source of a material, or if there were other areas of concern such as geographic sensitivity.
- In addition to continuing to use the criteria for new suppliers, in 2014 our goal is to requalify all of FMC’s existing raw material suppliers and significant construction contractors who were working with us before the process was enacted. Given the large number of suppliers, a third-party auditor will undertake this screening process.

Looking ahead, we will leverage our management practices around responsible sourcing to manage supply risk and opportunities, continue to work with our supply chain partners to integrate our processes into site policies and work closely with suppliers to improve practices and drive innovation.

Regulatory Compliance

To ensure FMC’s compliance with the reporting requirements of the U.S. Dodd-Frank Wall Street Reform and Consumer Protection Act and to improve management of potential supplier risk, we established processes to trace materials through our supply chain. Our efforts included the development of a Conflict Mineral Policy, obtaining technical data on the composition of our materials to understand if they contain conflict minerals, and conducting further due diligence with our suppliers to understand country of origin for materials containing tin, tungsten, tantalum and gold.

In May 2014, FMC filed its report on capital Form SD with the U.S. Securities and Exchange commission, as required under the Dodd-Frank Act.

Sharing Responsibility for Resource Management

FMC’s resource management projects are elements of a systematic effort to enhance visibility into and influence the impact we have on the environment and our stakeholders. We are taking steps to identify, analyze and act on opportunities to use natural resources more efficiently and to reduce our environmental footprint. We are strengthening collaboration with members of our value chain to deal effectively with some of the world’s most challenging issues.

Supplier Relationships

FMC supplies a variety of materials to our customers, including lithium, gold, copper, and other rare earths, all of which are critical to our businesses and our stakeholders. We are taking steps to ensure that our raw material suppliers and contractors sourced responsibly and provided the best value and support to our businesses and communities.

Legacy Remediation

As a company with an operating history of over a century, FMC has a number of legacy sites we are working to remediate. Our remediation strategy emphasizes community engagement when determining the best way to return former sites to productive use.

Responsible Value Chain Partners

Sustainability at FMC extends into productive collaboration with our value chain partners – especially customers and suppliers. We work together on programs that drive greater responsibility, accountability and transparency.

Customer Relationships

As meaningful partners, we seek ways to help our customers meet their own sustainability goals. For example, knowing that key customers wanted more information about social responsibility in their supply chains, we developed a Social Responsibility Assessment (SRA) program. Created in partnership with a third-party audit firm, the SRA assesses performance of our sites on environmental, health, safety, labor and other aspects of our business.

Our first SRAs were conducted at Health and Nutrition sites because of their strategic importance to the interests of end consumers. We concluded two SRAs in 2013 at our Newark, Delaware, and Rockland, Maine, locations. Results have been positive thus far, with only one finding that was quickly corrected. We are planning to undertake five more audits in 2014 and are working to expand the program into selected parts of our supply chain.

Regulatory Compliance

To ensure FMC’s compliance with the reporting requirements of the U.S. Dodd-Frank Wall Street Reform and Consumer Protection Act and to improve management of potential supplier risk, we established processes to trace materials through our supply chain. Our efforts included the development of a Conflict Mineral Policy, obtaining technical data on the composition of our materials to understand if they contain conflict minerals, and conducting further due diligence with our suppliers to understand country of origin for materials containing tin, tungsten, tantalum and gold.

In May 2014, FMC filed its report on capital Form SD with the U.S. Securities and Exchange commission, as required under the Dodd-Frank Act.

Sharing Responsibility for Resource Management

FMC’s resource management projects are elements of a systematic effort to enhance visibility into and influence the impact we have on the environment and our stakeholders. We are taking steps to identify, analyze and act on opportunities to use natural resources more efficiently and to reduce our environmental footprint. We are strengthening collaboration with members of our value chain to deal effectively with some of the world’s most challenging issues.

Supplier Relationships

FMC believes that responsible corporate citizenship extends to our suppliers’ business practices.

In 2012 FMC published its first Supplier Code of Conduct and updated our vendor management process to ensure that our raw material suppliers and contractors sourced responsibly and provided the best value and support to our businesses and communities.

- Since publication in 2012, new suppliers are required to adhere to the Code and have gone through our screening and verification process prior to joining our network.
- By the end of 2013 all of our most significant, existing raw material suppliers were also screened against our criteria. We identified these initial suppliers based on the types of material they supply, if they were the sole source of a material, or if there were other areas of concern such as geographic sensitivity.
- In addition to continuing to use the criteria for new suppliers, in 2014 our goal is to requalify all of FMC’s existing raw material suppliers and significant construction contractors who were working with us before the process was enacted. Given the large number of suppliers, a third-party auditor will undertake this screening process.

Looking ahead, we will leverage our management practices around responsible sourcing to manage supply risk and opportunities, continue to work with our supply chain partners to integrate our processes into site policies and work closely with suppliers to improve practices and drive innovation.

Regulatory Compliance

To ensure FMC’s compliance with the reporting requirements of the U.S. Dodd-Frank Wall Street Reform and Consumer Protection Act and to improve management of potential supplier risk, we established processes to trace materials through our supply chain. Our efforts included the development of a Conflict Mineral Policy, obtaining technical data on the composition of our materials to understand if they contain conflict minerals, and conducting further due diligence with our suppliers to understand country of origin for materials containing tin, tungsten, tantalum and gold.

In May 2014, FMC filed its report on capital Form SD with the U.S. Securities and Exchange commission, as required under the Dodd-Frank Act.

Sharing Responsibility for Resource Management

FMC’s resource management projects are elements of a systematic effort to enhance visibility into and influence the impact we have on the environment and our stakeholders. We are taking steps to identify, analyze and act on opportunities to use natural resources more efficiently and to reduce our environmental footprint. We are strengthening collaboration with members of our value chain to deal effectively with some of the world’s most challenging issues.
Since launch in 2012, all new suppliers are subject to the screening process and must adhere to the Code.

**Front Royal Forges Forward**

At the Avtex Fibers Superfund Site in Front Royal, Virginia, FMC is completing over 20 years of remedial construction activities. The cleanup of the historical plant area provides land for a business development area encompassing approximately 170 acres and the creation of open space in the remaining areas, including a conservation park. Within the conservation area is a brand new water treatment plant to treat the contaminated groundwater.

The conservation park created by FMC contains areas which were once waste disposal basins and are now open fields and ponds that provide a habitat for the ever increasing biodiversity in the area. Warm season grasses native to Virginia were planted to help return this area to much the same state that existed hundreds of years ago, albeit with access to walking and bicycle trails.

**Supplier Relationships**

FMC believes that responsible corporate citizenship extends to our suppliers’ business practices.

In 2012 FMC published its first Supplier Code of Conduct and updated our vendor management process to ensure that our raw material suppliers and contractors sourced responsibly and provided the best value and support to our businesses and communities.

- Since publication in 2012, new suppliers are required to adhere to the Code and have gone through our screening and verification process prior to joining our network.
- By the end of 2013 all of our most significant, existing raw material suppliers were also screened against our criteria. We identified these initial suppliers based on the types of material they supply, if they were the sole source of a material, or if there were other areas of concern such as geographic sensitivity.
- In addition to continuing to use the criteria for new suppliers, in 2014 our goal is to requalify all of FMC’s existing raw material suppliers and significant construction contractors who were working with us before the process was enacted. Given the large number of suppliers, a third-party auditor will undertake this screening process.

Looking ahead, we will leverage our management practices around responsible sourcing to manage supply risk and opportunities, continue to work with our supply chain partners to integrate our processes into site policies and work closely with suppliers to improve practices and drive innovation.

**Regulatory Compliance**

To ensure FMC’s compliance with the reporting requirements of the U.S. Dodd-Frank Wall Street Reform and Consumer Protection Act and to improve management of potential supplier risk, we established processes to trace materials through our supply chain. Our efforts included the development of a Conflict Mineral Policy, obtaining technical data on the composition of our materials to understand if they contain conflict minerals, and conducting further due diligence with our suppliers to understand country of origin for materials containing tin, tungsten, tantalum and gold.

In May 2014, FMC filed its report on capital Form SD with the U.S. Securities and Exchange commission, as required under the Dodd-Frank Act.

**Sharing Responsibility for Resource Management**

FMC’s resource management projects are elements of a systematic effort to enhance visibility into and influence the impact we have on the environment and our stakeholders. We are taking steps to identify, analyze and act on opportunities to use natural resources more efficiently and to reduce our environmental footprint. We are strengthening collaboration with members of our value chain to deal effectively with some of the world’s most challenging issues.

**FMC Lithium’s Lectro® Max line of customized lithium foils** is used as the anode in lithium batteries. Lithium, being both the lightest and the most electronegative, provides the highest electrochemical equivalence of all metals.